a Government


To the Norse, it was the tree of life. Vikings called themselves, Aeslings, men of ash, believing that the first man was made from an ash tree. The universe, they believed, spins on an ash tree axis, Ygddrasil, the world tree, which has earth in its roots, and heaven in its canopy. Legend says that when the ash trees die, so will we. Little wonder therefore that when the ash dieback disease struck in Denmark, it caused deep fear about how much we have destabilised our life support systems on earth.

walkingwithpoets.wordpress.com/2013/07/11/ash-the-tree-of-life/

Advertisements

There is a small hope that unique British races of the species—isolated from continental Europe 8,500 years ago—may prove unusually resistant to the blight.

During the 19th century, as global trade increased exponentially, so did the incidence of tree blights. In the early 20th century, after rich countries instituted biosecurity regimes, the growth rates slowed, and in America, at least until recently, remained fairly linear. But in Europe, around 1960, the infection rate picked up, very likely due to the trade-boosting effect of economic integration. This not only spread diseases around the continent itself. It also made the law-abiding countries of northern Europe, such as Britain, susceptible to the sloppier customs regimes of the continent’s southern fringe.

http://www.economist.com/news/britain/21580459-arboreal-confirmation-britain-european-country-european-problems-unquiet-woods?fsrc=rss|btn

Thousands of mature, native ash trees are being dug up and burned after the devastating disease ash dieback was confirmed in Devon.

About 2,000 trees at Byway Farm near Tiverton are affected, according to the Forestry Commission.

This is the first confirmed case of the disease in mature, native trees in the region – another nine cases have been confirmed in young trees that have been recently planted at sites across Devon and Cornwall, including two sites on Dartmoor National Park, according to Forestry Commission figures.

Ben Jones, of the commission’s England plant protection team, said: “It appears that the affected trees had the disease when they were planted in 1996-97. It is concerning and we are continuing our investigations into how the spread had taken place and how far it has spread.”

http://www.westernmorningnews.co.uk/Trees-burned-infection-ash-dieback/story-19481835-detail/story.html

Dutch elm disease is a tragic thing to watch, but we shouldn’t be too gloomy. Woody vegetation responds, adapts, regroups. What emerges in its recovery stage may not be the same as before, but it will always be a vital, dynamic, arboreal community.

The fungus, now known as Chalara fraxinea, is biologically mysterious, an entirely new organism of uncertain origins. It probably evolved in eastern Asia, where it appears to be harmless to native ash species. Its ancestor is a benign and widespread leaf fungus called Hymeno­scyphus albidus, native even in the UK. But at some recent date, this threw up a mutant, Hymenoscyphus pseudoalbidus, with slight genetic differences but a terrible virulence.

Natural resistance is likely to be the best hope for the survival of a core population of ashes in the UK. Isolated from the continent for nearly 8,000 years, our trees may be more genetically diverse than those in Poland.

For their part, ordinary rural people were mystified by the need for plantations, having lived for thousands of years with woods that renewed themselves spontaneously and indefinitely by seeding, or by regrowth from cut coppice stools and pollards. In place of this system of natural regeneration came the notion of trees as artefacts, biddable machines for the production of timber, programmed at every stage of their lives from planting to cutting.

The fundamental grammar of our relationship with them had been changed. Previously, “growing” had been an intransitive verb in the language of woods. Trees grew, and we, in a kind of subordinate clause, took things from them. In the forest-speak of the Enlightenment, “growing” became a transitive verb. We were the subject and trees the object. We were the cause of their existence in particular places on the earth.

Now, in the extremities of ash dieback, we can see that decades of well-intentioned planting have been not only often unnecessary, but, quite possibly, dangerous. Runtish saplings, often mislabelled and of unknown provenance, are shoved into the ground, regardless of whether they might be vectors for disease, or whether the soil is right and the site appropriate.

The existence of a large population of indigenous ashes is our best safeguard for the future and makes rather baffling the Forestry Commission’s experiment, initiated early in May, of planting out trial plots with 150,000 saplings of “15 different varieties”. The intention is to discover whether a few may be resistant and eventually propagate from them. But as 80 million ashes from probably ten times that number of genotypes are already engaged in just such an experiment across Britain, it is hard to see this as much more than a PR exercise – one that fits tidily in to our long, hubristic belief that the salvation of trees lies with us and our superior arboreal intelligence only.

http://www.newstatesman.com/sci-tech/2013/06/our-ash-trees-are-dying-dont-despair-catastrophes-are-natural-events-lives-trees

See also: http://worldwidewood.wordpress.com/2013/06/17/natural-ash-nursery-cleared-and-ready-for-the-deer-fence/

The Genome Analysis Centre (TGAC) has worked fast to sequence and assemble the valuable genome of the survivor “tree 35” from the recent Ash Dieback outbreak that have caused devastating damage to the Danish Ash woodlands and that now threatens the UK trees.

This information will be useful to those that are trying to find the trees that would offer at least a partial resistance and can be used to replace the now empty woodlands and remediate the damage.

This work contributes to the Nornex consortium, part of the Biotechnology and Biological Sciences Research Council (BBSRC) and Defra funded bioscience response to ash dieback (Chalara fraxinea). Prof. Erik Dahl Kjær and his group have been instrumental in the success of this project, read more about his work on this here.

“The genome sequence of this ash will be an essential tool that can help us to follow the inheritance of the ability of some ash trees to tolerate and to inhibit the growth of the Chalara fraxinea pathogen. Such knowledge will help generate new varieties of ash trees that can withstand attack by the fungus,” said Prof. Allan Downie at the John Innes Centre.

http://www.tgac.ac.uk/news/52/68/Unravelling-the-genetic-code-of-the-Ash-Dieback-survivor-tree-35/

The South East has been declared a “low priority” area – authorities say that because the disease is already widespread, it is not cost effective to tackle it.

Dr Alun Griffiths, microbiologist and chairman of the Kent Men of the Trees conservation charity, said the county needed better protection.

“I’ve been studying diseases around the world all my professional life,” he said.

“I’ve always thought that if you have a focus, an area where disease is being spread rapidly, that would be the place where you’d put most of your effort.

The government is planting thousands of young ash trees in the region as part of a research trial, including at the Hucking Estate near Maidstone.

Scientists hope 1% of them may survive and develop resistance in a decade’s time.

http://www.bbc.co.uk/news/uk-england-kent-22510873

 

Genetic resistance to ash dieback disease is to be studied at a Suffolk Wildlife Trust (SWT) nature reserve.

Scientists from the Forestry Commission are using the site at Arger Fen and Spouse’s Grove, near Sudbury, to study genetic resistance to the Chalara fungus – which causes the disease.

About 15 different strains of ash will be planted on the five acre site later this week.

The trust responded to a request from the Forestry Commission for sites.

http://www.bbc.co.uk/news/uk-england-suffolk-22484952

Next Page »